If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-19x^2+33x-9=0
We add all the numbers together, and all the variables
-16x^2+33x-9=0
a = -16; b = 33; c = -9;
Δ = b2-4ac
Δ = 332-4·(-16)·(-9)
Δ = 513
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{513}=\sqrt{9*57}=\sqrt{9}*\sqrt{57}=3\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-3\sqrt{57}}{2*-16}=\frac{-33-3\sqrt{57}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+3\sqrt{57}}{2*-16}=\frac{-33+3\sqrt{57}}{-32} $
| 5x-34=18+x | | 4x+(x-20)=410 | | 2(t-3)+2=2(2t-5) | | -1=y~1 | | |x+6|+6=12 | | 5=y.5 | | x^2-21x+140=0 | | x=1/x+15 | | 3x-2(x-5)=2x(x+3)-8 | | 4x-(3+2x)=7 | | -16x^2+52x=42.25 | | -16x^2+52x=52.25 | | -12+5x=34+x | | 5x-12=34+x | | X+(5x-12)=34 | | X+5x-12=34 | | (a-5)+(a+5)+90=180 | | 4x/3-20=-8 | | 8*w=3*w+20 | | 14-3i=2 | | (-1/3)/1=p | | -1/3/1=p | | x/5+9=0 | | 270+(2a-12)=360 | | 180+90(2a-12)+9+a=360 | | (n+5)³=0 | | 5x+8=20‐x | | 180+90(2a-12)+9=360 | | 3(2)(1+4)=9z | | 49+m=36 | | 130+(2a+20)+2a=360 | | 9x=8x+34 |